A 2-Approximation for the Height of Maximal Outerplanar Graph Drawings

نویسندگان

  • Therese C. Biedl
  • Philippe Demontigny
چکیده

In this paper, we study planar drawings of maximal outerplanar graphs with the objective of achieving small height. A recent paper gave an algorithm for such drawings that is within a factor of 4 of the optimum height. In this paper, we substantially improve the approximation factor to become 2. The main ingredient is to define a new parameter of outerplanar graphs (the so-called umbrella depth, obtained by recursively splitting the graph into graphs called umbrellas). We argue that the height of any poly-line drawing must be at least the umbrella depth, and then devise an algorithm that achieves height at most twice the umbrella depth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

2-connecting Outerplanar Graphs without Blowing Up the Pathwidth

Given a connected outerplanar graph G of pathwidth p, we give an algorithm to add edges to G to get a supergraph of G, which is 2-vertex-connected, outerplanar and of pathwidth O(p). This settles an open problem raised by Biedl [1], in the context of computing minimum height planar straight line drawings of outerplanar graphs, with their vertices placed on a two dimensional grid. In conjunction...

متن کامل

Proximity Drawings of Outerplanar Graphs ( Preliminary

A proximity drawing of a graph is one in which pairs of adjacent vertices are drawn relatively close together according to some proximity measure while pairs of non-adjacent vertices are drawn relatively far apart. The fundamental question concerning proximity drawability is: Given a graph G and a deenition of proximity, is it possible to construct a proximity drawing of G? We consider this que...

متن کامل

Planar Lombardi Drawings of Outerpaths

A Lombardi drawing of a graph is a drawing where edges are represented by circular arcs that meet at each vertex v with perfect angular resolution 360◦/deg(v) [3]. It is known that Lombardi drawings do not always exist, and in particular, that planar Lombardi drawings of planar graphs do not always exist [1], even when the embedding is not fixed. Existence of planar Lombardi drawings is known f...

متن کامل

On Upward Drawings of Trees on a Given Grid

Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algo...

متن کامل

Graph Drawings with One Bend and Few Slopes

We consider drawings of graphs in the plane in which edges are represented by polygonal paths with at most one bend and the number of different slopes used by all segments of these paths is small. We prove that d 2 e edge slopes suffice for outerplanar drawings of outerplanar graphs with maximum degree ∆ > 3. This matches the obvious lower bound. We also show that d 2 e + 1 edge slopes suffice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017